Vamp plugins

- Chunks of compiled program code delivered in shared library files (DLLs), which can be loaded and used by a compatible host
- Extract partially structured data ("features") from audio input
- No display or interaction, just calculation
- Examples – note onset detector, chromagram value calculation, amplitude tracker
- Vamp is not an acronym
A Plugin in its Natural Habitat

HOST

{ AUDIO (ONE OR MORE CHANNELS) } \rightarrow \text{VAMP PLUGIN} \rightarrow

{ POINTS IN TIME } \rightarrow \text{VALUES} \rightarrow \text{GRIDS}

(MULTIPLE POSSIBLE OUTPUTS AND OUTPUT TYPES)
Philosophical notes

- Nothing very clever about Vamp; it just fills a need
- Much drawn from existing audio processing APIs
- Complications mostly from the fact that a plugin may legitimately want to return almost anything

Classic data description problem:

- How far do the plugin and host need prior mutual understanding about the meanings of the data being returned?
- Where to draw the line between “a fixed set of possible feature types” and “anything at all”?
Things a Plugin May Need

- **Always**
 - Basic descriptive data: Identifier, name, description, maker etc
 - Processing preferences: Input domain, step size, block size, channel count
 - Output descriptors
 - `process` and `getRemainingFeatures` methods

- **Sometimes**
 - Parameters: descriptors, get and set methods
 - Programs: list of names, get and set methods
Plugin Lifecycle

1. Plugin library loaded
2. Plugin object constructed, with sample rate
3. Host queries: outputs; preferred input step & block size, domain, channel count; parameters & programs
4. Parameters and programs set
5. Plugin initialised with step & block size, channels
6. Repeated calls to process
7. One call to getRemainingFeatures
Processing – time domain input

Consecutive process calls

Plugin

Each process call may return some features...

- point
- value
- (nothing)

...and some may be left at the end.
Frequency-domain input

- Audio input
 - FFT
 - FFT
 - FFT Shift
 - Shaped Window
 - etc.

Consecutive process calls

Plugin

Output

Fixed block size

Step size may differ (e.g., 50% overlap)
What does a plugin return?

- Plugin may have many outputs, and always calculates all of them: host doesn't choose up front
- Each call to `process` or `getRemainingFeatures` may return zero or more “features” per output
- A feature has
 - Time (implicit or explicit)
 - Zero or more values
 - An optional label
- Empty features are perfectly valid
A feature
has a time
and zero or more values
(and maybe a label)

A feature list
zero or more features probably similar in form

Audio input (one block)

Plugin

Outputs a feature set
one feature list per output
What does a feature represent?

- Something that happened at a particular time
 - Note onset
 - Column of data for a chromagram plot
 - Amplitude estimated from a particular region of input

- Time may be
 - *Explicit*: timestamp in the feature object
 - *Implicit*: deduced by the host based on the time in samples of the data passed in to process
 - this depends on the “sample type” for the output
Values of a feature

- A feature may have values associated with it
 - Note onset (from simple onset detector) has no values
 - Column of chromagram data has lots of values
 - Amplitude has one value
- Host's understanding of the “meaning” of a feature depends on which output it is returned on
- Output descriptor may supply units, bin labels (for multi-value features), minimum/maximum extents
- In future: known feature types via RDF
Some Limitations

• All values in a single feature must have same unit
 – Many real examples of features as points in multidimensional space are not comfortably handled
 – No proper way to express “duration” of a feature, a very common requirement

• No inputs other than audio – no plugin chaining

• Partial input blocks not supported
 – host has to zero-fill last block, can't tell plugin it is incomplete
Pros and Cons compared with Matlab

• Pros
 – Can be used in many different host applications
 – Doesn't require big commercial supporting framework
 – May run faster or handle larger data sets

• Cons
 – Useless without a host
 – Needs to be recompiled for every target platform
 – Familiarity with C or C++ required
 – Things Matlab does by magic have to be written by hand
 – Algorithm must support block-by-block processing
More

- Website: http://www.vamp-plugins.org/
- Forum (complaints and announcements): http://www.vamp-plugins.org/forum/
- Programmers Guide coming up “any day now”: http://www.vamp-plugins.org/develop.html
 - just as boring as this presentation, but much longer
- Vamp SDK v1.2 out this week as well, perhaps